Для расчета железобетонных плит и балок прежде...
Все новости
Войти на сайт
Логин:
Пароль:
Регистрация  |  Пароль?  |  Закрыть
у нас можно скачать программы бесплатно или Рецензия на Последняя фантазия духи, а так же качественные шаблоны dle без регистрации
Круглые резервуары с предварительным напряжением
Основное преимущество предварительно напряженных резервуаров перед...
Расчет круглых резервуаров
Особенность расчета круглых железобетонных резервуаров состоит в том,...
Резервуары и водонапорные башни
В заглубленных резервуарах должна быть произведена изоляция стен и...
Расчет подпорных стен
Боковое давление земли на заднюю плоскость стены определяется...

Самоуплотняющийся бетон – эффективный инструмент в решении задач строительства

Опубликовал: admin | Дата: 25.07.17 |

Самоуплотняющийся бетон – эффективный инструмент в решении задач строительстваСамоуплотняющийся бетон – эффективный инструмент в решении задач строительства.

Самоуплотняющийся бетон – эффективный инструмент в решении задач строительства.

Самоуплотняющийся бетон представляет собой материал, который способен уплотняться под действием собственного веса, полностью заполняя форму даже в густоармированных конструкциях. Он находит все более широкое применение. Перспективным является его использование для производства сборного железобетона, устройства монолитных высокопрочных бесшовных полов, торкретбетонирования, реставрации и усиления конструкций. Чем же самоуплотняющийся бетон отличается от традиционно применяемого.

Особо высокопрочные бетоны, модифицированные добавками-суперпластификаторами, начали применять в конце 60-х — начале 70-х годов прошлого века. В частности, в 1970 году такой бетон использовался для строительства нефтяных платформ в Северном море норвежскими и британскими специалистами. Опыт применения подобного материала показал преимущества введения суперпластификаторов в бетонную смесь, однако был замечен и ряд ограничений в работе с ним. Во-первых, большинство суперпластификаторов, особенно при больших дозировках, способны замедлять схватывание бетонной смеси. Во-вторых, при ее транспортировке в течение 60–90 минут эффект от действия добавки снижается, то есть уменьшается подвижность. В-третьих, подача смеси по трубопроводу к месту укладки на расстояние свыше 200–250 метров стимулирует расслоение и создает неоднородность в готовом изделии. В результате время выполнения работ по бетонированию возрастает, ухудшается качество поверхности изделий, снижается прочность.

Появление новых амбициозных проектов в сфере строительства (таких, как протяженные подвесные мосты в Японии и Китае, комплексы крупных гидротехнических и транспортных сооружений в Голландии и ряд других) повысило требования к особо высокопрочным бетонам. При возведении таких конструкций было необходимо использование литых смесей в большом объеме. А зачастую участки бетонирования находились на большом расстоянии от места производства бетона и даже на значительном удалении от побережья (на воде). Кроме этого, еще одной необходимостью было сокращение времени и трудозатрат на уплотнение бетонной смеси, а также повышенный набор прочности в ранние сроки.

Решению указанных задач способствовали теоретические исследования и практические внедрения, направленные на.

применение мультифракционного заполнителя для получения высокопрочного бетона.

введение микро- и ультрадисперсного наполнителя для повышения прочности, коррозионной и трещиностойкости материала.

управление реологией высокоподвижных бетонных смесей.

создание новых видов химических модификаторов, регуляторов свойств бетона.

В 1986 году проф. Окамура [см. Okamura H. Ouchi M. Self-Compacting Concrete // Advanced Concrete Technology, 2003, Vol. 1, No. 1 ] при разработке высокопрочного бетона обобщил опыт, накопленный в указанных областях, предложив называть получаемый материал “самоуплотняющийся бетон.

Самоуплотняющийся бетон — Self-Compacting Concrete (SCC) — способен уплотняться под действием собственного веса, полностью заполняя форму даже в густоармированных конструкциях. Первая международная конференция по изучению его свойств прошла в 1998 году с участием 150 ученых и инженеров из 15 стран. Высокая эффективность нового материала способствовала созданию рабочей группы специалистов RILEM (1996 г.) из 8 стран для разработки рекомендаций по использованию самоуплотняющихся бетонов. В 2004 году организован технический комитет 205-DSC “Долговечность самоуплотняющегося бетона”, председателем которого является проф. Шуттер. В работе этого комитета задействованы 25 лабораторий из 14 стран. В результате исследований была разработана классификация самоуплотняющихся бетонов [см. EFNARC: Specification and Guidelines for Self-Compacting Concrete. Farnham, February 2002 ], определяющая их назначение и области применения.

Классификация бетонных смесей для производства самоуплотняющихся бетонов.

Наименование бетонной смеси.

Стены и тонкостенные профили, армированные с шагом свыше 80 мм. Максимальное расстояние транспортировки более 5 метров.

В 1980-е годы начали разрабатывать большепролетные подвесные железобетонные мосты, размеры которых должны были стать рекордными. Самый длинный мост — Акаши Кайкё — был открыт в апреле 1998 года в Японии. Он соединяет друг с другом острова Хонсю и Сикоку. Мост имеет три пролета: центральный, длиной 1991 метр, и две секции по 960 метров. Общая его длина составляет 3911 метров. К началу работы над этим проектом физические лимиты существующих материалов были исчерпаны. Поэтому новый ультра высокопрочный самоуплотняющийся бетон оказался востребованным и позволил увеличить нагрузку и пролет моста.

Для бетонирования только одной опалубки фундамента этого сооружения потребовалось 256000 м3бетонной смеси, в то время как высота пилонов на побережье приближается к высоте Эйфелевой башни и достигает 283 метров. Конструкция моста выдерживает скорость ветра до 80 метров в секунду и сейсмическую активность до 8,5 баллов по шкале Рихтера.

В конце прошлого века производство самоуплотняющихся бетонов стало значительно возрастать. В Японии при возведении стен крупного водохранилища в июне 1998 года благодаря самоуплотняющемуся бетону удалось сократить сроки строительства с 22 запланированных месяцев до 18, при этом количество рабочих уменьшилось со 150 до 50. Самоуплотняющийся бетон применялся и в Швеции при строительстве прибрежной линии с запада на восток в южной части Стокгольма. Это несколько переходов с мостами, земляными насыпями, туннелями и бетонными конструкциями, общей протяженностью 16,6 км. Причем сооружения должны выдерживать воздействие грунтовых минерализованных и морских соленых вод, а также циклические замораживания и оттаивания. Стоимость проекта составила 800 миллионов долларов.

Состав бетонной смеси для самоуплотняющихся бетонов.

Компоненты бетонной смеси.

Еще одним примером служит высокоскоростная эстакада в Мумбаи длиной 2,32 км с шириной полосы проезжей части 16,2 м. При ее строительстве впервые в Индии использовался высокопрочный самоуплотняющийся бетон с микрокремнеземом. Проектная прочность составляла 75 МПа, подвижность бетонной смеси достигала 70 см [см. Mullick A.K. High Performance Concrete in India – Development, Practices and Standardization // Indian Concrete Journal, 2005, Vol. 6 (2) ]. Этот вид бетона также применяли при возведении атомной электростанции, строительстве мостов и туннелей метрополитенов в других городах страны.

Для достижения высоких эксплуатационных характеристик самоуплотняющихся бетонов предъявляются очень жесткие требования к производственным материалам. Крупность мелкого заполнителя составляет не более 0,125 мм, причем 70 % из них размером 0,063 мм. Крупный заполнитель обязательно фракционируют по размерам 10–16 мм и 16–20 мм. Также допускается применение неорганических материалов с высокой удельной поверхностью, которые увеличивают водоудерживающую способность смеси (белая сажа, молотый асбест, бентониты). Например, 20 кг активного кремнезема заменяют 60 кг цемента и обеспечивают равнозначную прочность, причем в ранние строки твердения прочность увеличивается, так же как трещиностойкость и водонепроницаемость бетона [см. M. Collepardi. Admixtures-Enhancing concrete performance // 6th International Congress, Global Construction, Ultimate Concrete Opportunities, Dundee, U.K. – 5-7 July 2005.

Рис. 1. Кинетика роста прочности самоуплотняющего бетона.

в начальные сроки твердения.

Важной составной частью самоуплотняющихся бетонов является полимер нового поколения — поликарбоксилат — высокоэффективный комплексный химический модификатор, появившийся в 1990-х годах и обозначаемый PC или PCE. Действие пластификаторов нового типа основано на совокупности электростатического и пространственного эффекта, который достигается с помощью боковых гидрофобных полиэфирных цепей молекулы поликарбоксилатного эфира.

За счет этого продолжительность пластифицирующего действия поликарбоксилатов в 3–4 раза больше по сравнению с сульфомеланиновыми, сульфонафталиновыми формальдегидами или лигносульфонатами. Указанная способность позволяет не только повысить подвижность раствора в ранние сроки, но и сохранять ее в течение большего периода времени, что положительно сказывается на сроках транспортировки бетонных смесей с заводов к местам строительства.

Механизм действия нового суперпластификатора заключается в том, что частицы поликарбоксилатов адсорбируются на поверхности цементных зерен и сообщают им отрицательный заряд. В результате цементные зерна взаимно отталкиваются и приводят в движение цементный раствор (рис. 2). Только небольшая часть цементного зерна покрыта полимером, и свободной поверхности флокулы цемента достаточно для доступа воды и протекания реакции гидратации. Отметим, что структуры полимеров различаются по длине основной цепи, длине боковых цепей, количеству боковых цепей и ионному заряду. Поэтому свойствами данных полимеров можно управлять, изменяя молекулярную структуру и направленно воздействуя на свойства бетона.

Рис. 2. Механизм действия добавки поликарбоксилата.

Проектировщики ставят своей задачей возможно более длительную эксплуатацию строительных сооружений. Например, расчетный срок службы моста Акаши Кайкё составляет 200 лет. Бетон фундаментов и опор пилонов подвержен воздействию не только нагрузке от самого моста и транспорта, движущегося по нему, но и агрессивных компонентов, растворенных в морской воде. Последние, особенно сульфат ионы, способствует развитию коррозии.

Повышенная плотность материала, отсутствие в его структуре крупных пор и капилляров препятствуют проникновению агрессивной среды вглубь бетона, снижая риск развития процессов коррозии. По расчетам [см. Min D. Minshu T. Formation and expansion of ettringite crystals // Cement and concrete research, 1994, 24-(1) ], кристаллизационное давление эттрингита в порах способно достигать значений 54 МПа. Кроме того, проектная прочность зачастую превышает 100 МПа, соответственно, напряжений, возникающих от образования экспансивных фаз, недостаточно для начала трещинообразования.

Однако трещинообразование в самоуплотняющемся бетоне может развиваться не под воздействием агрессивной среды, а за счет термических напряжений, так как при возведении крупных сооружений объемы формуемых монолитных конструкций зачастую составляют десятки и даже тысячи кубических метров. Известно, что в течение небольшого промежутка времени вследствие экзотермического эффекта температура бетона значительно возрастает и может превысить температуру окружающей среды. При этом для 1 м3 бетона разница температур между наружными и внутренними слоями может достигать 6–8 С. Благодаря явлению тепловыделения в результате протекания реакций гидратации цемента изменяется температурное поле в изделии, возникают дополнительные внутренние напряжения, представляющие опасность для еще не сформировавшейся структуры материала. Авторами с помощью разработанной методики расчета температурных полей в бетоне проведена оценка и определено, как будет изменяться температура по сечению материала в зависимости от объема формовки (рис. 3.

Рис. 3. Кинетика изменения температуры внутренних слоев и наружной поверхности бетона в процессе гидратации цемента.

Также повышению температуры бетонный смеси, а, следовательно, и риску появления сети трещин, способствует разогрев при ее транспортировке от создаваемого трения о стенки трубопровода. При увеличении температуры окружающей среды этот эффект значительно усиливается и приводит, в конечном счете, к ухудшению качества поверхности бетонных изделий, нарушению их структуры, долговечности и коррозионной стойкости. Для снижения внутренних напряжений и, соответственно, риска трещинообразования рекомендуется использовать вяжущие вещества с низким тепловыделением, незначительным содержанием щелочей, сульфатостойкий или шлакопортландцемент.

Самоуплотняющийся бетон находит все более широкое применение. Перспективным является его использование для производства сборного железобетона, устройства монолитных высокопрочных бесшовных полов, торкретбетонирования, реставрации и усиления конструкций. С одной стороны, распространение самоуплотняющихся бетонов ограничивается дороговизной добавок поликарбоксилатов. Однако использование этого материала позволяет отказаться от виброуплотнения, что в свою очередь уменьшает энергозатраты и экономит время, улучшая санитарно-гигиенические условия труда работающих. Безвибрационная технология настолько снижает уровень шумового воздействия на человека и окружающую среду, что заводы железобетонных изделий можно размещать в урбанизированных городских районах.

В начале статьи мы поставили вопрос: что такое самоуплотняющийся бетон и в чем его отличие от классического бетона? Рецептура самоуплотняющегося бетона отличается не только вводом добавок нового поколения (поликарбоксилатов). Ее проектирование требует оптимизации гранулометрического состава и внедрения микронаполнителей. Следовательно, прогнозирование свойств получаемых изделий ставит сложную задачу перед исследователями в области бетоноведения. Улучшение показателей качества может быть достигнуто за счет применения математических моделей, учитывающих и описывающих реологию литых смесей, оптимальное распределение заполнителей в структуре материала, а также аппроксимационных статистических зависимостей, оценивающих влияние микронаполнителей на эксплуатационные характеристики сооружений. Таким образом, формируется системный подход к определению показателей качества бетона, позволяющий прогнозировать и направленно регулировать его свойства в зависимости от целей и задач, решаемых строителями и технологами.

С. М. Базанов, М. В. Торопова, Ивановская государственная академия архитектуры и строительства.

скачать dle 11.1смотреть фильмы бесплатно
Похожие статьи
М250 свойства бетона. М250 свойства бетона. Бетон М250 подходит для бетонных...
Виды бетона и его свойства. Сегодня фактически такой строительный материал, как...
Б етон – искусственный каменный материал, получаемый в результате затвердевания...
Монолитный бетон. Монолитный бетон – это современный искусственный стройматериал,...
Комментарии
Особенность расчета круглых железобетонных резервуаров состоит в том, что здесь при...
Плиточный материал считается самым надежным для...
Скачать Сборник - "Стройка и ремонт" (более 600...
Свойства бетона и ячеистого бетона. Мой дом -...
Реклама
Основное преимущество предварительно напряженных резервуаров перед резервуарами из...
Моем натяжной потолок: основные правила бережного...
Строительство: Строительные конструкции,...
Ремонт квартир в Ставрополе 89614494737. Ремонт...
Выбирая напольное покрытие, каждый руководствуется не только своим эстетическим вкусом,...
Постройка быстровозводимого частного дома из готовых комплектов сборного железобетона -...
Ремонт квартиры без пыли и грязи? Вполне осуществимо. Не цена и не траты времени...